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Abstract Various examples of bi-rational transformations having their origin in the theory 
of exactly solvable venex models in lattice statistical mechanics, as well as bi-rational 
transformations originating from spin edge models, are malysed using the singularity 
confinement method. "his method provides results concerning the integrable (or not) character of 
these bi-rational transformations in complete agreement with the resulls obtained by visualization 
methods as well as methods based on the analysis of algebnic invariants. 

1. Introduction 

The construction of integrable systems is a particularly delicate question. This is all the 
more true for discrete systems since the latter have only recently attracted the attention 
of the integrability community. Thus the various techniques which exist for the study of 
continuous integrability have not yet been fully developed in the discrete case. However, 
progress has been quick, thanks to strong analogies between continuous and discrete 
systems. 

In this paper we intend to study integrable mappings using a combination of methods: 
derivations based on matrix transformations and integrability assessment with the help of 
a discrete integrability detector. In a series of papers, some of us (JMM, GR) [l-31 

, derived and studied mappings associated with matrix transformations. The initial motivation 
for this study stemmed from the fact that these mappings can be interpreted as discrete 
symmetries of the Yang-Baxter equations [4-71. The class of the tranformations considered 
consists, in fact, of combinations of involutions. Since we are only interested in 
rational representations, the resulting mappings are bi-rational, i.e. rational in both the 
forward and the backward evolution. Various classes of matrix transformations have 
been studied and the resulting mappings were identified with respect to their integrability 
properties [ 1,3,8]. This study of integrability was based on a detailed numerical study 
of the iteration combined with the explicit construction of invariants for the integrable 
cases [1.3,8]. 

From a different standpoint, the remaining authors (BG, AR) have developed, over the 
past few years, a method which makes possible the identification of integrable mappings [9] .  
Based on the study of singularities of rational mappings, the singularity confinement method 
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requires for integrability that any spontaneously appearing singularity should disappear after 
a few iterations of the mapping. This method has made possible the identification of 
numerous integrable discrete systems. 

In this paper, we set out to apply the singularity confinement approach to systems derived 
by the matrix-transformation method. This is a crucial test for the singularity confinement 
conjecture and, indeed, we show that, in every case, it is possible to distinguish successfully 
between integrable and non-integrable systems. In the case of systems the status of which 
was not clear at the outset, the singularity confinement was used as a predictor and its 
prediction was verified subsequently by detailed calculations. Finally, we devote a section 
of this paper to an analysis of discrete systems proposed by Falqui and Viallet [IO]. and 
comment on their results relating singularity to integrability. 

2. Some bi-rational transformations 

In previous papers, we have analysed bi-rational representations of discrete groups generated 
by involutions, having their origin in the theory of exactly solvable vertex (or spin) 
models in lattice statistical mechanics [4-7,11, 121. These involutions correspond to two 
kinds of transformations on q x q matrices: the inversion of the q x q matrix and an 
(involutive) permutation of the entries of the matrix, respectively. In [I] ,  a particular 
permutation of the entries was analysed. For this permutation. it has been shown that the 
iteration of the associated bi-rational transformations presents some remarkable factorization 
properties [ 11. These factorization properties explain why the ‘complexity’ of these 
iterations (degree of the successive iterates) instead of having the exponential growth 
one would expect, actually has a polynomiul growth [I]. It has also been shown that 
the polynomial factors occurring in these factorizations do satisfy remarkable nonlinear 
recursion relations and that the latter were actually integrable, yielding algebraic elliptic 
curves. 

Let us consider the q x q matrix: 

We introduce the following transformations: the matrix inverse I ^ ,  the homogeneous matrix 
inverse I and a transformation t which, in the following, will denote a permutation between 
two entries of the q xq matrix, for example t 1 2 - ~ ~  which permutes m12 and mzl, specifically 
studied in [I], or 112-43 which permutes m12 and m43 [8]: 

f ~ Rq --+ R;‘ (2.2) 

I : Rq --f R;’ det(R,). (2.3) 

The homogeneous inverse I is a polynomial transformation on each of the entries mi, which 
associates to each m;j its corresponding co-factor in the framework of the inversion relation. 
The two transformations t and i are involutions and the homogeneous inverse verifies 
Iz = (det(R,))qn2 . Zd, where Zd denotes the identity transformation. We also introduce 
the (generically infinite-order) transformations K = t .  I and k = f . i. Transformation K is 
apolynomiu! transformation on the entries mij, while k is clearly a rational transformation 
on the entries mij. In fact it is a bi-rational transformation since its inverse is f .  t .  
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2.1. A first set of bi-rational transformations: permutation t12-21 

Considering q x q matrices, let us first recall the factorization properties for the iteration of 
the homogeneous transformation K and recursion relations obtained for permutation t i~-ZI 
which represents one example among a set of permutations denoted class I in [I ,  81. 

Let us first consider the successive matrices obtained by iteration of the homogeneous 
transformation K on a generic q x q matrix Rq (see (2.1)) and the determinants of these 
various matrices: 

MO = R, M I  = K(Mo) f l  = det(M0). (2.4) 
Remarkably, the determinant of matrix MI factorizes, enabling us to the introduction of a 
homogeneous polynomial fi: 

Again, j:-* also factorizes in  all the entries of the matrix K ( M i ) ,  leading to the introduction 
of a new 'reduced' mabix M z :  

In fact, similar factorization properties are true at any order. Generally, for n 3 1 and 
q 2 4, one hast 

and the following relation independent of q :  

From another point of view, transformation K corresponding to this mapping has been 
shown to yield nigebraic elliptic curves in CP,,-, [ I ] .  In Cfjs  these algebraic elliptic 
curves can be seen as the intersection of quadrics [3], in a very similar way as for the 
sixteen vertex model [12]. 

One important consequence of these factorizations is to introduce the homogeneous 
polynomials f n  . These polynomials do verify, independently of q, a whole hierarchy of 
nonlinear recursion relations [ I ]  such as 

(2.9) 
f " f A 3  - f n + 4 + ,  - - fn-If;+z - f n t 3 f 2  

f n - l f n + 3 f n t 4  - f 3 " + l f " + S  f n - z f n t z f n + 3  - f n - i f n f n + 4  

or, for instance, among many others, 

f n + I f ; + 4 f o t 5  - fn+Zf:+sfn+6 - - f n + Z f , + s f n + 6  - f n t 3 f : + q f n t 7  . (2.10) 

Let us introduce here variables [ I ,  81 corresponding to the iteration of the inhomogeneous 
transformation R :  

f:+Zf?+3fn+l - fnfP+*f:t5 f;+3fn+4fn+8 - fn+lfn+5f:+6 

x, = det(k"(M0)) det(k""(M0)). (2.11) 

t Because of factorizations (2.7) one cm see that the iteration of the homogeneous transformation K yields a 
polynomial growth of the complexity of the calculations: the degree of the determinant of the mahix M,, as well 
as the degree of the poiynomials f , ' s  are quadratic expressions ofn [I]. 
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The x,'s also satisfy recursion relations, for instance, 
X" - 1 

x"-Ix"x"+I - 1 
.Xn--1Xn+, . (2.12) - - X,tl - 1 

X"X"+IX"+Z - 1 
RI : 

Relation R I  is actually equivalent to 

(2.13) 

These factorizations and recursion relations were shown in [ I ]  to hold true for arbitrary q. 
In fact one can consider recursions (2.12) and (2.13) independently of the matrix 

framework detailed previously. that is, independently of (2.11). In this case, it can also 
be shown that both mappings (2.12) and (2.13) are infegrable [l,  81. From the definition of 
the x,'s one can get (see 111) a very simple expression of the x,'s in terms of the fa's: 

f.4 f " t 2  
xn= f 2  f ' 

"+I  "-2 
(2.14) 

Therefore, in analogy to the f.'s, one also has a whole hierarchy of recursion relations on 
the x.'s. The analysis of this hierarchy of compatible nonlinear recursion relations has been 
sketched in [ I ]  and will be recalled here briefly. 

Recursion relations (2.12) and (2.13) yield algebraic elliptic curves [I]. This can be 
shown by relating them to bi-quadratic relations, introducing the (homogeneous) variables 
qn ; 

f" fn+3 
f"+l f"+2 ' 

9 n  = (2.15) 

Equation (2.9) or (2.12) or (2.13) can be integrated to the bi-quadratic relation: 

(P - q" - q.+d(qo 9.tl + A )  = /.L (2.16) 

where A, p and p are integration constants [lit. 
The relation between the algebraic elliptic ewes corresponding to the iteration of K in 

@ P q ~ - l  and the elliptic curw.~ associated with the recursion on the f.'s or x.'s (see (2.9), 
(2.12)) or the bi-quadratic relations (2.16) has been detailed in [l]. 

The variables xn's (defined by (2.1 1)) satisfy a whole hierarchy ofrecursion relations [ 11, 
each being valid for arbitrary values of q. All the recursion relations on the x,'s can be 
written in the following general form: 

with the first and the last exponents i l ,  i t .  j o ,  j r + I ,  ko and kr+r being equal to 1. Up to 
a simple multiplicative factor X ~ X , " + , X ~ ~ ~  . . . , one has the same rational expression on the 
left- and right-hand side of (217) up to a shift s (n + n + s). 

Because of this specific form, it is clear that one can get, from one recursion relation, 
an (infinite) set of other ones combining a recursion relation with itself where the index n 
has been shifted. For instance, one gets, from (2.12), another one with a shift of 2: 

Many examples of integmble mappings related to bi-quadratic elliptic curves have recently been obtained by 
Quispel and collaborators [13-151. 
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The recursion R3, seen independently of any q x q matrix problem (see (Z.Il)), is not 
(generically) integrable [l]. Furthermore, there exist other procedures (symmetries.. .) to 
get, from one recursion relation, a new one (see [ I ]  for more details). For instance, when 
some conditions are satisfied, other recursion relations, with the same shift s, can actually 
be deduced by the following transformation which has been called 'procedure II' [3]: 

(2.19) 
acting on the left- and right-hand side of (2.17), the factor x ~ x ~ ~ , , x ~ + ,  . . . being changed in 
a different way [l]. For instance, starting from (2.13), procedure ll generates the following 
new recursion relation: 

(2.20) X"+I xn+2 - 1 
x. &+I X"tZX,+3 - 1 

n : x. --+ X" X,t,I 

' X" xn+z X"+3 , - - X"+Z x,+3 - 1 
X"+l X"+ZX"+3 x.+4 - 1 

R4 : 

This can be shown to be integrable. Let us introduce (homogeneous) variables q.'s as 
follows: 

X" = q.tl/q.~ (2.21) 

(2.22) - qnt4 - qntz 

Equation (2.20) reads 

- 4"+3 -%+I  

(4"+4 - qn)qn+1qn+zqn+3 (qnt5 - qn+1)qn+zqn+3qn+4 
which can be 'integrated' to get two bi-quadratic relations [ 11 

(P"4"tI - 1)(P"tlqn - 1 ) = ,k ' 4"4"+1(P + 4" + S"+l) (2.23) 

where p,, = p1 (if n is even) and pn = fi  (if n is odd) as well as h and p, are constants of 
integration. 

2.2. Another bi-rational transformation: pennutation t12-32 

Besides the analysis of permutation t12-21 and the corresponding bi-rational 
transformations?, a similar analysis can be performed on other permutations of two en- 
tries [3,8]. The permutations of two entries with their associated bi-rational transformations 
have been classified in [3]. Among these (six) classes of transformations, one is of particular 
interest since it clearly exhibits both integrability and 'weak' chaos. Let us consider here 
the bi-rational transformation associated to the particular permutation: t12-32. 

The factorizations corresponding to the iterations of this bi-rational transformation K 
now read as 
det(Md = f;+~ . (f.P-*. h - 1  f::; fn-3) . (f::: f - 5  f::: fn-7). . . f? (2.24) 

where 8, depends on the truncation, andf 

K ( h f , )  = M"+I . (f.P-3 ' j::; ' L - 3 ) .  (f::: ' j n - 7 )  ' (f:::. f::; ' f-11). . . f? 
(2.25) 

where 5. = q-3  for n = 1 (mod 4), cn = 0 for n = 2 (mod 4), Cn = q-2 for n = 3 (mod 4) 
and Cn = 1 for n = 0 (mod 4). One notes that the following factorization, independent of 
q3 occurs: 

(2.26) 

t Called c l ss  IV in [3,81. 

successive matrices Me's, as well as the polynomials fn's, grow like A" with A ci 1.465 571 226.. , , 
From these equations it can be shown lhat one has an exponential growth of the calculations: the enhies of the 
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The fa's do not satisfy simple recursions (like (2.9)) but 'pseudo-recursions' where 
products from f, all the way down to f] occur [8,3]. One of these 'pseudo-recursions' can 
be written as follows: 

( f + Z  - f n - l f n + l )  

(fn - f n - 3 f - I )  

f n - 6  f n - I O  fn-14.  .. 
fn-4 fn-8 f n - 1 2 . .  . 

(2.27) 

Though one does not have recursions on the fn 's  but pseudo-recursions such as (2.27), the 
variables x.'s defined previously (see (2.1 1)) remarkably satisfy [SI simple recursions ofthe 
form (2.17) independent of q: 

- fn (fn-I fJI-5 f " - P . .  .) - (f"+l f"-3 f n - 7 . .  .) 
fn-2 (fn-3 fn-7 fn - I1  . , .) - ( f n - I  fn-5  h - 9 . .  .) 

- 

(2.28) 

One can actually show [SI that the x,'s, corresponding to permutation 212-32 through (2,Il), 
do satisfy a w,hole hierarchy of recursion relatiom. in the same way it has been proved for 
permutation t12-21 in 111. It has also been shown [SI that a recursion of the form (2.17) 
(but with some of the exponents kt+,r's negatiw) is actually satisfied for the bi-rational 
transformations associated with permutation 212-32. 

We will study another recursion relation, related to (2.28) (which is a consequence of 
it): 

X"+I - 1 1" X"+Z .- - - xn+z - 1 
-%+I x,+3 - 1 ~ " X . + Z  - 1 &+I ' 

This recursion relation is actually equivalent to another one, namely 

X.+I - 1 
X" X"+Z - X"+l 

. x. X.+Z - - X"+Z - 1 
X,+l X n + 3  - x.+z 

(2.29) 

(2.30) 

These new recursions are not necessarily satisfied by the x.'s, corresponding to permutation 
$12-32 through (2.1 1): they are only satisfied when the initial matrix in the iteration satisfies 
a particular condition (see [SI). We will come back to this point in the following section. 

Following [I], one can consider these recursion relations for themselves, without 
referring to our bi-rational transformations acting on q x q matrices anymore. Again one 
can see that some of these recursions are integrable (for instance (2.30)) while some are 
(generically) not integrable (for instance (2.28)). 

Recursion relation (2.29). or equivalently (2.30), is an integrable one yielding elliptic 
curves [SI; however, one notes that the recursion deduced by a shift of two of (2.29), namely 
(2.28). is not integrable (it has, however, a very regular behaviour corresponding to (very) 
weak chaos; a situation which has been called 'almost integrable' [3]). 

In fact, equation (2.28), though generically not integrable, can be partially integrated [8]. 
Instead of the variables xn's ,  let us come back to homogeneous variables qn's defined as 
follows: 

4n+z 
4. 

X" = -. (2.31) 

From (2.28) bearing on the xn's,  one recovers the 'almost integrable' relations studied in 
section 8 of [31: 

(2.32) 
q0+3 - 9"il , 1 c + 5  - 4ni3 . 1 - - 

9n+4 - 4. qn+34n+l qn+6 - 4n+2 &+54n+3 
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3. Singularity confinement andysis of selected examples of mappings 

In this section, we will analyse mappings obtained from matrix transformation, as explained 
in section 2, using the integrability detector developed in [la]. The method is based on the 
conjecture that the movable (i.e. initial condition dependent) singularities of an integrable 
discrete system are confined, i.e. they do not extend ad infinitum under the iteration of the 
mapping. 

One of the most interesting examples is the simpler mapping of [I] ,  namely (2.32). 
A numerical study of this mapping is shown in the (qn, q.+l)-plane (figure l ) ,  and from 
the observed regularity one would be tempted to surmise that (2.32) is indeed an integrable 
recursion relation. One first integration of (2.32) is straigheorward. Noting that the left-hand 
side is twice upshifted with respect to the right-hand side, we can integrate (2.32) to 

1 
(3.1) - _  - 

1 (2 - &) ' qn+r - qn An 
where A, is a parity-dependent parameter: Az. = ,Le and = A,. We rewrite (3.1) as 

Figure 1. Orbit of an ileration of K in the (x,,x,+[)-plane close to the A I  = A2 integrability 
condition. 
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Adding q2"+2 to both sides and using the fact that A.+z = A,, we can integrate once more 
to give 

(3.3) 
An 

4.+1 
where p,, is also parity-dependent: p2n = pe and &+I = p.. 

So the study of the integrability of (3.1) is reduced to that of (3.3). Clearly the only 
singularity of (3.4) occurs when the denominator qn+I vanishes. So let us assume that, for 
some n, we have q,,-l finite and qn = E ,  where E is a small quantity (and without loss of 
generality one can assume that n is odd). m e  singularity sequence is then the following 
(to dominant order): 

q n + 2  + q n  -4- - = Pm 

q" = E 

A, 
q*+3 = -- 

E 

E 
.L - 2 L  

he 
2 A e - A o )  he 

qn+4 = 

4"+S = 
qn+s = Po 1 

E k-21 ,  

We remark that the sequence qn+4. qn+s, qn+6 reproduces the initial sequence qn. q,,+l, 
qn+2 with E replaced by Q = (he - 2A0)/Ae E and A./€ replaced by 2(h, - io)/;. Thus 
the singularity will propagate indefinitely unless its sequence is broken at the qn+5 level by 
assuming A, = io. Indeed, with this assumption we find 

qn+4 = --E 

qn+s = qn-I 
A0 

Qn+6 Po -!- - 
qn-I 

and thus the singularity is confined: no singular terms appear beyond qn+3 and, moreover, 
the memory of the initial condition is recovered in qn+6 through 4-1. So our prediction is 
that (2.32), or equivalently (3.3), is not integrable, unless for the latter, A, = A,, in which 
case it can be integrated in terms of elliptic functions. 

Motivated by these results we have systematically considered the iteration of 
transformation K, for Ai # A? in the (qn, q,+l)-plane which, for aesthetic reasons, will 
be given in the (x.,xn+l)-plane. For a quite large set of initial conditions (satisfying 
A1 # A2) one gets curves. For initial conditions such that hl - A*, these curves look similar 
to the biquadratic equations mentioned in section 2: see figure 1. However, a systematic 
examination of these orbits shows that, though in some domain of initial conditions such 
that A, - AI, one gets most of the time regular curves, one does find (although rarely) 
very stretched 'bubbles' which comespond to islands of regularity. However, with a proper 
choice of initial values, we can obtain an orbit which looks like a curve with 16 self- 
intersections. This gives a rough idea of the frontier between the dominant regular curves 
and sixteen islands of regularity: see figures 2(a) and (b). Actually, if one iterates KI6 
instead of K ,  the orbits are regular curves inside a single one of the 16 islands. One does 
not jump from one island to another one, but rather one can restrict oneself to one of these 
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m 

F i y r e  3. An illustrillion of the elliptic-versus-hyperbolic points situations on a set of orbits in 
a region between islands of regularity, 

islands, and then the whole situation reproduces ‘self-similarly’. K being replaced by K16. 
A very careful and drastic magnification of the space between the islands shows that one 
has a situation similar to the one of the hyperbolic-versus-elliptic points encountered in the 
Hinon-Heiles mapping [ 17-21]’(. Figure 3 is an illustration of this elliptic-versus-hyperbolic 
situation. Regularity largely dominates for initial conditions such that h, - h2 (in the sense 
of a measure on the initial conditions), and the chaos corresponding to the hyperbolic 
points needs an extremely careful numerical study (we have called such mappings ‘almost 
integrable’ [3]). However, one can actually find initial conditions where chaos clearly 
occurs. Figure 2(b) provides an example of well established chaos. 

A large family of mappings has been studied in 131, where the recursion relations 
obtained have been classified with respect to their integrable character. One of the simplest 

t At this point it is important to make t?e follcying comment: since they y e  generated by involutions, 811 our 
b!-rationd transfomatkons are such that K and K-’ we conjugated ( K  = 1 ,  I = I ,  K- I  , t ) ,  When transformation 
K (or more precisely K2) CM be reduced to a mapping on only two variables, this means that one has Some area- 
presewing properties and one CM recover the features of two-dimensional dynamics (elliptic-versus-hyperbolic 
points, Arnold’s diffusion. .. [18-21]). This explains. to some extent. the regularities one encounters here with 
the permutation 112.12. even when the mapping is not integrable, 
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integrable cases obtained is the mapping R I .  Solving for xn+2 we obtain 

(3.4) 

A singularity of X,+Z appears when one of the x 's  in the denominator vanishes or when 
x, = I .  Let us start with the first case and assume that x,-] and x. are regular while x,,+i 
vanishes, i.e. X,+I - 6. We obtain the following singularity pattern: 

x,+z = - 
€ 2  

U 
x,+3 = -1 + O(6) Xn+l = 6 

X"+4 = - €2 1 
x,+s = -- a E 

where U depends on x,, &+I. Moreover we find that (as E --t 0) x . + z x . ~  = I ,  
x , + I x , + ~  = - 1 ,  and indeed, x.+6 = I/&, x.+7 = -l/xn-l. Thus the singularity is 
confined and, as we see, its effect on the iteration is indeed particularly simple. The second 
type of singularity may appear when (x,  - 1) vanishes. So let us assume that x , - ~  and 
x,-l are finite and that x. = 1. First we compute X,+I with this assumption (using the 
down-shifted form of (3.4)) and we find X,+I = l/xn-l. Using these values we obtain 
xn+z = I/x,-2 and thus no singularity develops despite the vanishing of the (x. - 1) factor 
in the denominator. 

Thus, both the most obvious singularity patterns of (3.4) lead to confined singularities. 
Before concluding on the integrability of this mapping, we must investigate the possibility of 
existence of more intricate singularity patterns. One such pattern could have been described 
by the set of values ( f .  0,O) for (&-I, x n ,  x . + ~ ) ,  where f stands for a finite value. However, 
such a pattern is impossible since, after a zero value (preceded by finite values), we can only 
have 03. The same holds for a pattern (f, 0, 1). The pattern ( f ,  I ,  0) is equally impossible 
since, after a value 1 preceded by a finite value f, the only possible value is l/f.  The only 
possibility which cannot be rejected off-hand is pattern ( f ,  1, 1) but the same argument tells 
us that one can only have f = 1, which means that, in fact, we are blocked on the constant 
solution x, = 1 for all n .  This singularity is not confined but it  is not movable either, so 
this is not incompatible with integrability. Now we can indeed state that (3.4) has only 
confined movable singularities. From our conjecture it must be integrable. and this is, in 
fact, the case. 

Another integrable mapping is Rq. which can be solved to give 

(3.5) X"+4 = 2 

As in the previous case, a singularity may develop when any of the x, in the denominator 
vanishes or when X.+~X,,+:! = 1. The latter situation, in analogy to x, = 1 for (3.4) above, is 
a case where the singularity, in fact, never develops. Indeed, computing x,+g based on the 
assumption that x n - ] ,  x,, x,+l ,  xn+z are regular with x,+ Ix ,+~ = I, we find xn+3 = I /&,  
and iterating x , + ~  = l/xn-l and so on. 

Let us now turn to the study of a singularity where x,, x,,+I. X,+Z are regular and xn+3 
vanishes. We find the following sequence: 

1 + XntZXn+3 ' (xaxn+I&+2 . (1 + xn+3) - 1 - xn - x n x n + I )  

XnxntIX"+2X:+3 ' ( x n t I x n t 2  - 1) 

U 
X"+4 = - 

€ 2  
xn+3 = 6 

x,+5 = - 1  + bc t S(S') 
I 

Xn+7 = -~ 
a V E  

Z 
x,+6 % C E  

where a ,  b and c have complicated expressions in terms of x,, X,+I and x.+z. Iterating 
further, we obtain finite values for x,+S, x,+g, xntlO, x n f l l  and we also find that 
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x n + ~ x n + ~ + l  # I (in this range) and thus the singularity is confined. Special singularity 
sequences inay appear, in particular, whenever the initial conditions are such that a2c(ac + 
b) = 1, but these ones are also confined. Thus (3.5) has only confined singularities in 
agreement with its integrable character. 

We have 
considered the recursion relation R3: 

Our last example will be chosen among the non-integrable mappings. 

(3.6) 

As previously, the vanishing of (&+I - 1) does not lead to a singularity. So let us 
assume that x,, x , + ~  and x,+z are finite while x,+g - E .  Then we find the following 
sequence: 

xnXn+IXn+Z ' (&+lxn+3 - 1) + 1 -xat3 
X"t4  = x"x"tIx,t*x~+3 2 ' (X"+I - I )  

a l + c  
Xn+9 = - I"+? = - 

€ 2  
x,,+.g sz bc a b2 

where a, b and c depend on the initial conditions. Conversely, we may introduce a, b and 
c as free parameters and ask for the conditions for the backward iteration to lead to finite 
x,+g (we find c # 0 or X ~ + & + ~ X ~ + ~  # 1 )  and finite x,+z. x,+r, x,  (we find a2c(c+ 1 )  = I 

sequence X,+6, . . . x , + ~  (the latter turns out to be &+IO - I /€)  with a, b and c given and 
iterate forward. We find 

or . T , ~ + ~ x : + ~ x ~ + ~ x ~ + ~  ( x , + ~ x , + ~ x , , + ~  Z - 1) # 1). It is then easier to postulate the singularity 

1 
&+12 7 &+I3 6 

E 
&+I1 - E 2  

1 
x,,+j+ finite x,,+js - - 

E 

i.e. the same sequence as for X,+6. . . .x,+lo (up to the precise coefficients). Thus, the basic 
singular pattern propagates itself and the singularity is not confined, as was expected, given 
the non-integrable character of (3.7). 

From all these examples we see that there is a perfect agreement between the singularity 
confinement conjecture predictions and the integrable (or not) character, analytically and/or 
numerically established, of the systems under consideration. 

4. Comparison with the approach of Falqui and Viallet 

In a recent publication [lo], Falqui and Viallet have addressed the problem of the 
relation between the singularities of bi-rational mappings in the projective 2-plane and 
their integrable (or not) character. The bi-rational transformations they consider are, in 
close analogy to ours, realizations of Coxeter groups, generated by involutions. We 
will concentrate here on the part of their work in direct relation to the present work, 
namely the case where the group is generated by just two involutions I ,  J .  Here J is 
the Hadamard inverse, [XI + [ ] / X I ,  and I is related to J through some collineation 
matrix C: I = C-'JC. The method of Falqui and Viallet is based on the examination 
of the set of points which 'blow up' under the action of some operator of the group 
(i.e. (IJ)", ( I J ) " I ,  J ( I J ) "  or ( J I ) " ) ,  called the singular locus of the transformation. 
Given a poini in the projective 2-plane, we will say that it 'blows up' if its iteration 
under some operator of the group leads to an indeterminate (O,O,O). If this happens 
for an infinity of distinct points (infinite singular locus) then Falqui and Viallet consider 



Integrable mappings from mat& transformations 7609 

this as an indication of non-integrability and in fact, with some technical precautions, 
they cast their result in the form of  a theorem. The precise setting is crucial to the 
proof: 

projective two-plane 
to have properly singular bi-rational transfomationst. 

Does this mean that when the singular locus is finite the mapping should be integrable? Not 
necessarily so, as can be seen from the examples they offer. The example in their paragraph 
6.3 is based on the collineation matrix 

c = ( i  1 -2 ; ? I ) .  1 

The singular points of the transformation are the singular points P; of the Hadamard 
inversion J([l,O, 01, [O, 1,0l, [O, 0, 11) and the singular points Q, of the involution 
rei, ~ 1 1 ,  [ L O ,  -11, [ i ,  -L 11). 

The singular locus is given by the diagram below: 

This mapping is integrable and possesses the invariant 

Putting x = uy and z = uy  we can write it simply as 

u u + u z - 2  
U - U  U - - U  

u t  = U' = 
uu t- U2 - 2 

The example of their paragraph 6.6 is based on the collineation matrix 

2 0 2  

1 This properly singular requirement iS automatically fulfilled in their examples, since lheir bi-rational 
hansformations ax generated by two involutions. one involution being precisely the Hadomard inverse I and 
the other one being intettwined to the Hadamard inverse by B collineation. 
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Putting x = uy and z = uy we can write it as 

The singular locus is: 

p3 xQ2 Q 3  

J 

In this case, the mapping does not possess any invariant. 
How can one understand those aesults in terms of our approach of singularity 

confinement? First let us apply our method of analysis to the mapping (4.2) above. A 
singularity appears whenever the Jacobian of (U', U')  with respect to u and U vanishes. This 
happens for u + u  =0, U - U  - 1 = 0 and U - v +  1 = 0.  I f u + u  = 0 then U' = U' = 0 and 
this remains true for all the subsequent steps. This singularity is  not confined. To check 
that it is indeed a movable singularity we ask how one can have U' + U' = 0 without first 
having u + u  = 0. This is precisely the case when u - U = &I,  which gives U' = -U' = &2 
and indeed U" = U'' = 0. Moreover, the lines K - U = f l  have pre-images which are 
regular all the way: this is a typical case of a non-confined movable singularity. Thus our 
prediction is that the mapping (4.2) is not integrable, in agreement with the absence of an 
invariant and the exponential growth of the calculations noted by Falqui and Viallet [IO] 
(even though the singularity locus is finite). 

Let us now turn to (4.1). The analysis looks superficially similar to the one of (4.2).  
The Jacobian vanishes for u - U = 0 and u + U = k2, The singularity for u - U = 0 gives 
U' = U' = 0 and this remains true for subsequent iterations. Such a singularity would not be 
confined but the only way to have U' = U' forjinite U ,  U that do not already satisfy u = U at 
the previous step is to have U + U = i 2 .  This does indeed lead to U' = U' but the common 
value is + I  leading to an indeterminate form 010 for U", U" rather than the value 0. In fact, 
CL'' and U" have finite values and depend on the initial conditions. This is a typical confined 
movable singularity: one degree of freedom was apparently lost over one single iteration 
step at the point (il, il). Still, before concluding on the integrability of this mapping, 
one must consider all possible singularities, including those where a denominator vanishes. 
This can happen whenever U(U + U) = 2 (or u(u + U )  = 2). In this case U' (resp. U')  
diverges while U' (rap. U ' )  remains finite. At the next step we find U" = 0 (resp. U" = 0) 
and everything remains finite thereafter. Again this is a confined singularity. (The case 
where both denominators vanish corresponds to U = U = il already studied). Finally let 
us consider the singularity in the 'backwards' iteration when U' = U' = a with a # (0, & I ) .  
We find that both U ,  U diverge with afinire sum and all the previous preimages also diverge 
with a vanishing sum. So the singularity pattern is the following: we start from (00, -00) 

go through (a,  a)  and then get blocked on (0.0). This is again a non-movable singularity (or 
if the emergence of a degree of freedom @,a) which was previously absent and vanishes 
subsequently is considered as a singularity, the latter is movable and confined). So this 
mapping passes the singularity confinement test, as expected, given its integrable character. 



Integrable mappings from matrix transformations 761 1 

In the light of our results. we can now present our interpretation of the approach of 
Falqui and Viallet [ I O ] .  A singular diagram of the type 

corresponds to confined singularities. Indeed. since the point P blows up under J ,  this 
means that we have a one-dimensional manifold (for simplicity we shall call it a ‘line’) 
which reduces to P under the action of J .  Thus one degree of freedom is lost: a singularity 
appears. Next the action of I brings us back to P ,  which, at the following step blows 
up under J and thus we recover the lost degree of freedom: the singularity is confined. 
The presence of longer ‘arms’ leading to a one-step singular loop as in the case of their 
paragraph 6.2 of Falqui and Viallet [IO] just means that it can take more steps to confine 
the singularity since one may ‘enter’ at the beginning of the arm and ‘exit’ only after some 
wandering about, but still the singularity is always confined. 

On the other hand a singular diagram of the type 

I 

indicates a priori a non-confined singularity. Indeed, a ‘line’ shrinks down, under J ,  to 
the point P and the action of 1 transfonns P into Q. Then we have to apply J .  Since 
Q blows up under I .  not J ,  the action of J does not lead to a recovery of the lost degree 
of freedom but rather sends us back to the point P and so on. Thus, a t  this point, we are 
stuck on this singularity, which is not confined. We can now understand why mapping (4.2) 
is nor integrable. The fact that the singular loop is connected to other non-singular points 
does not change anything with this reasoning: this just means that there are several ‘entry 
points’ to one singular loop. 

The case of the singular loop of mapping (4.1) is more subtle: there is indeed a non- 
confined singularity but it is not a movable one. The only way to reach the line L that 
‘blows down’ to P was to be on L at the previous step, because I ( L )  = L. (This was not 
the case in the preceding example: the singularity there was indeed movable). But then 
at the preceding step, where we have to use J, we again blow down to P and thereafter 
we alternate between P and Q. So we did not lose any degree of freedom: a ‘spurious’ 
degree of freedom appears for two steps (in fact two half-steps) then disappears again. 
If one considers that the singularity is precisely the appearance of this spurious degree 
of freedom (rather than the loss of one, as usual) then we are indeed in the presence of a 
movable and confined singularity. This singularity is precisely the one found by our method: 
, .. --f (w, -w) -+ @,a)  * (0,O) --f ” ’ .  
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The main difference between our approach and that of Falqui and Viallet [IO] lies 
in the fact that in applying the singularity confinement criterion we distinguish between 
movable and non-movable singularities. Only the non-confined movable singularities are 
incompatible with integrability. Since Falqui and Viallet only examine the iteration where 
a ‘line’ blows down to a point, but never look ‘backwards’ to see where this line comes 
from, they cannot distinguish between movable and non-movable singularities. A movable 
singularity is one where the ‘line’ which blows down to a point, leads, when iterated 
backwards, to an infinite set of other ‘lines’. The non-movable case corresponds to a line 
which, upon backwards iteration, only leads to afinite number of lines and then blows down 
to a point. It is thus crucial to know what are the pre-images of every singular point. 

Although in a general setting the application of the singularity confinement criterion 
must be carried along the lines we explained above, it may turn out that, in the restricted 
setting of Falqui and Wallet, the examination of the singular locus may suffice to give a 
necessary criterion for integrability (though not a sufficient one, as their example 6.6 shows). 
In principle, even an infinite singular locus may be compatible with integrability from the 
point of view of the singularity confinement. In the case of their example 6.3 above, the 
singularity was the apppearance of a spurious degree of freedom for some iterations preceded 
and followed by two fixed points between which the mapping alternates. In analogy to this 
case, we can imagine a situation where an infinify of (distinct) points exists before the 
appearance of some additional degree of freedom and that the latter disappears after some 
iterations leading again to an infinity of distinct points. From the point of view of Falqui 
and Viallet this is an infinite singular locus (and they would predict non-integrability), while 
from our viewpoint the singularity is a confined movable one (compatible with integrability). 
However, we have not been able to construct a mapping with this behaviour within the 
setting of Falqui and Wallet. This is an indication that, in this restricted setting, this 
situation may never occur and thus the finiteness of a singular locus would indeed be a 
necessary condition for integrability. 

5. Conclusion 
Various examples of bi-rational transformations, originating from vertex or spin edge models, 
have been analysed using the singularity confinement method. The singularity confinement 
method confirms ,the integrable character of transformations K corresponding to f12-21. A 
particular care has been devoted to the analysis of the iteration of K corresponding to t12-32 

where both regularity and weak chaos occur. Again this method provides results concerning 
the integrable (or not) character of these bi-rational transformations in complete agreement 
with the results obtained by systematic search of algebraic invariants for the action of the 
group. The encoding of the integrable (or not) character of a bi-rational transformation by 
a graph of the singularity locus is a tempting idea at first sight: still, the last section of this 
paper shows that such a graph, though giving precious indication on the very nature of the 
transformation, is not sufficient for such an encoding. 
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